Department of Chemistry Quaid-I-Azam University Ph.D Admission SampleTest Inorganic/Analytical Chemistry

Max. N	Marks: 50
Name:	
Roll N	
Father	's name:
NOTE	E: Attempt all questions.
Q.1. E	ncircle the correct option/s in each of the following statements. Thirtyfive (35) such statements will be given. (35)
1.	Sol-gel method is approach.
	(a) Bottom up, (b) Up bottom, (c) Top down, (d) Down top
2.	Which of the following statements is <i>incorrect</i> ?
a)	Mass spectrometry gives information about fragmentation patterns.
b)	Mass spectrometry provides direct structural data.
c)	Isotopic distribution patterns are observed in mass spectra.
d)	Parent ions are not always observed in the mass spectra of compounds
3.	Which of the following is not an inorganic functional material?
	a) Ferroelectric
	b) Reverse micelles
	c) Magnetic field sensor
	d) Light detectors
4.	The temperature at which paramagnetic materials converted into antiferromagnetic is
	called:
	(a). Neel temperature
	(b). Curie temperature
	(c). transition temperature
	(d). fusion temperature

5. Which of the following ion is kinetically labile?									
	a) Rh^{3+}								
	b) Ti ³⁺								
	c) Ru^{2+}								
	d) Cr^{3+}								
6.	CO ₂ is isostructural with:								
	a). HgCl ₂ b). SnCl ₂ C). SiO ₂ d). NO ₂								
7.	7. The calculated spin only magnetic moment for MnSO ₄ .4H ₂ O is:								
a).	2.83 b). 3.87 c). 5.06 d). 5.92								
8. In chromatography, peaks are well resolved when resolution value is									
	a) 1								
	b) 1.5								
	c) 0.5								
	d) 0								
9. The catalytic activity can be determined by of a catalyst.									
	a) Turn over Number								
	b) Turn over frequency								
	c) Stability								
	d) Selectivity								
	e) All of above								
10.	Which of the following phenomenon gives exotherm in DCS / DTA measurements?								
10.	which of the following phenomenon gives exotherm in Des / D171 measurements.								
	(a) oxidation (b) adsorption (c) decomposition								
	(d) vaporization								

11. poly		n of the following material?	ng techi	nique is	s more u	ıseful ir	n determining	the crystallite size in		
	b) X-1	ay photoelectro	n spect	roscop	y (XPS)	ı				
c) Scanning electron microscopy (SEM)										
	d) Au									
e) Atomic force microscopy (AFM)										
12.		The Ziegler-Natta Catalyst for polymerization of ethylene, is a complex of the metals:								
	c.	Aluminium and Aluminium and Aluminium and None of the and	nd Potas nd Titar	ssium						
13.	Lithiu	m cations give	colorati	on on	flame					
	(a)	golden yellow	(b)	green	l	(c)	carmine	(d) brick-red		
14. appr		n of the followin harge) is better	_				ype [Cp ₂ M Et	$(C_2H_4)]^n$ (where n is		
a) Fe (II)										
	b) Pt (b) Pt (II)								
	c) Nb	c) Nb (III)								
	d) Zr(d) Zr(IV)								
15.	What is	What is the primary component of an exhaled breath?								
	a)	N_2	b) O ₂	c)	CO_2	d)	H_2O			
16.	(a) tot (b) tot	t the non-equival number of tral number of Mal degeneracy	ansition	S	er amon	g the fo	llowings.			

17.	Seco	Secondary wastewater treatment method is							
	(b) t (c) r	hysical biochemical mechanical physicochemic	cal						
18.	(a) I (b) (c) p	alyst poisoning BOD coagulation primary treatm COD	g is a major pro nent	blem in					
19.	Wha	at charge, <i>n</i> , w	ould be necess	ary for the complex	[Ru(CO)4(SiMe3)] ⁿ to	o obey the 18			
el	lectron	rule?							
(a	ı) -1	(b) –2	(c) 2	(d) 1					
(a (t (c	n) Elec o) Elec c) Elec state	etron-donating etron-donating etron-donating	phosphine is b phosphine is b phosphine is b	etter able to stabilize etter able to stabilize etter able to stabilize	le than RhCl(CO)(PP e the latter in higher of the latter in low oxide the former in higher the former in low ox	xidation state lation state. oxidation			
Q.2:	Defin	e the followin	g terms.			(15)			
	a) B	Back bonding							
	b) N	AcLafferty re	earrangement						
	c) E	Clastomers							

(d) total microstates