QUAID-I-AZAM UNIVERSITY ISLAMABAD

PhD Admission Test, Fall 2020

SUBJECT: MATHEMATICS
CATEGORY: Pure Mathematics

Max Marks: $\underline{100}$
Pass Marks: $\underline{\mathbf{7 0}}$
Time Allowed: $5 \mathbf{5 0}$ Minute
(1) T_{1} topology on X is also called \qquad on X
(a) Finite topology (b) Co-finite topology
(c) Discrete topology (d) Non of the these
(2) Let A be a subset of topological space X. The closure of A is the of closed superset of A.
(a) Union (b) Intersection (c) Complement (d) None of the these
(3) If $A=A^{\circ}$, where A° denote the interior of A, then A is \qquad (a) Open (b) Closed (c) Clopen (d) Non of these
(4) Let $A=[0,1)$ and $B=(1,2]$ be the intervals on the real line \mathbb{R}. If d denotes the usual metric on \mathbb{R}, then $d(A, B)=\ldots \ldots$
(a) 0 (b) 0.5 (c) 1 (d) 1.5
(5) If $I=[0,1]$, then $\sup \{|f(x)|\}$ is a \qquad on $\mathrm{C}[0,1]$
(a) Quasinorm (b) Norm (c) Pseudonorm (d) Non of these
(6) The group G of rigid motions of the prism has order \qquad
(a) 4 (b) 6 (c) 8 (d) 10
(7) The units in \mathbb{Z}_{4} are
(a) 1 and 2 (b) 1 and 3
(c) 2 and 3
(d) Non of these
(8) Unity in an integral domain can be characterized as the nonzero (a) Idempotent (b) Nilpotent (c) Commutent (d) Non of these
(9) All positive integers less than p^{2} that are not divisible by p are relatively \qquad to p.
(a) Co-prime (b) Consonant (c) Prime (d) Non of these
(10) The elements of \mathbb{Z}_{n} that are integers relative prime to n form a of order $\phi(n)$ under multiplication modulo n.
(a) Semi-group (b) Group (c) Ring (d) Integral domain
(11) If $A \subseteq \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ has a limit at $c \in \mathbb{R}$, then f is \qquad on some neighborhood of c.
(a) Bounded (b) Un-bounded (c) Continuous (d) Differentiable
(12) If $f: A \rightarrow \mathbb{R}$ and if c is a cluster point of A, then f can have \qquad limit at c.
(a) No (b) Only one (c) Two (d) Non of these
(13) A continuous function on a closed bounded interval is \qquad on that interval
(a) Bounded (b) Conditionally bounded
(c) Unbounded (d) Non of these
(14) If $f: A \rightarrow \mathbb{R}$ is a Lipschitz function, then f is \qquad on A.
(a) Discontinuous (b) Uniformly continuous
(c) Differentiable (d) Non of these
(15) Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be monotone on I. Then the set of points $D \subseteq I$ at which f is discontinuous is a set.
(a) Uncountable (b) Countable (c) Denumerable (d) Non of these
(16) The \qquad of any number of subspaces of a vector space V is a subspace of V .
(a) Union (b) Intersection (c) Complement (d) Non of these
(17) The nonzero rows of a matrix in echelon form are linearly \qquad (a) Dependent (b) Independent (c) Pivot (d) Non of these
(18) Let W be a subspace of an n-dimensional vector space V. Then (a) $\operatorname{dim} W \leq n$ (b) $\operatorname{dim} W>n$ (c) $\operatorname{dim} W \geq n$ (d) Non of these
(19) Suppose V has finite dimension and $\operatorname{dim} V=\operatorname{dim} U$. Suppose F : $V \rightarrow U$ is linear. Then F is an \qquad if and only if F is nonsingular.
(a) Endomorphism (b) Metamorphism
(c) Isomorphism (d) Homomorphism
(20) Suppose $\operatorname{dim} V=m$ and $\operatorname{dim} U=n$. Then $\operatorname{dim}[\operatorname{Hom}(\mathrm{V}, \mathrm{U})]=$ \qquad (a) m (b) n (c) m / n (d) $m n$
(21) A parameterized curve is a smooth $\left(C^{\infty}\right)$ function $\gamma: I \rightarrow \mathbb{R}^{n}$. A curve is regular if \qquad
(a) $\gamma^{\prime} \neq 0$ (b) $\gamma^{\prime}=0$ (c) $\gamma^{\prime}=\infty$
(d) Non of these
(22) Let $\gamma: I \rightarrow \mathbb{R}^{n}$. be a regular curve. For any compact interval $[a, b] \subset I$, the arclength of γ over $[a, b]$ is given by.
(a) $L_{\gamma}[a, b]=\int_{a}^{b}|\gamma| d t$ (b) $L_{\gamma}[a, b]=\int_{a}^{b}\left|\gamma^{\prime}\right| d t$
(c) $L_{\gamma}[a, b]=\int_{a}^{b}\left|\gamma^{\prime \prime}\right| d t$ (d) $L_{\gamma}[a, b]=\int_{a}^{b}\left|\gamma^{\prime \prime \prime}\right| d t$
(23) A curve γ on a parametric surface X is called an asymptotic line if it has \qquad normal curvature.
(a) Negative (b) Zero (c) Positive (d) Non of these
(24) Let $\gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be a piecewise smooth, regular, simple, closed curve, and assume that none of the exterior angles are equal to π. Then $n_{\gamma}=\ldots \ldots$.
(a) 0 (b) ± 1 (c) ± 2 (d) ± 3
(25) The torsion of a curve is \qquad
(a) Signed (b) Unsigned (c) Curved (d) Non of these

Dr. Amjad Hussain (Focal Person for PhD Admission Test)

