- 1. One mole of a monatomic ideal gas in a perfectly insulated cylinder is compressed from initial volume V to $\frac{V}{2}$. If the temperature and pressure of the gas before this compression are T and P, what are their values after the compression?
 - (A) *T* and 2*P*
 - (B) *T* and $2^{5/3}P$
 - (C) $2^{1/3}T$ and $2^{2/3}P$
 - (D) $2^{2/3}T$ and $2^{5/3}P$
 - (E) $2^{5/3}T$ and $2^{5/3}P$
- 2. A table-tennis ball is thrown at a stationary bowling ball. The table-tennis ball makes a one-dimensional elastic collision and bounces back along the same line. Compared with the bowling ball after the collision, does the table-tennis ball have
 - (A) a larger magnitude of momentum and more kinetic energy,
 - (B) a smaller magnitude of momentum and more kinetic energy,
 - (C) a larger magnitude of momentum and less kinetic energy,
 - (D) a smaller magnitude of momentum and less kinetic energy, or
 - (E) the same magnitude of momentum and the same kinetic energy?
- 3. A charged particle is released from rest in a region where there is constant electric field and a constant magnetic field. If the two fields are parallel to each other, the path of the particle is a
 - (A) Circle
 - (B) Helix
 - (C) Straight line
 - (D) parabola
 - (E) cycloid

- 4. For blue light, a transparent material has relative permittivity (dielectric constant) of 2.1 and a relative permeability of 1.0. If the speed of light in vacuum is c, the phase velocity of blue light in an unbounded medium of this material is
 - $(A)\sqrt{3.1}c$
 - (B) $\sqrt{2.1}c$
 - (C) $\frac{c}{\sqrt{1.1}}$
 - (D) $\frac{c}{\sqrt{2.1}}$
 - (E) $\frac{c}{\sqrt{3.1}}$
- 5. The equation $y = A Sin[2\pi(t/T x/\lambda)]$, where A, T and λ are positive constants, represents a wave whose
 - A) amplitude is 2*A*
 - B) velocity is in the negative x-direction

 - C) period is $\frac{T}{\lambda}$ D) speed is $\frac{x}{t}$
 - E) speed is $\frac{\lambda}{\tau}$

- 6. Suppose that 1Kg. of ice melts to water that changes its entropy by α . The same process changes the entropy of the environment by β . What is the relationship between α and β ?
 - (A) $\alpha = \beta$
 - (B) $\alpha = -\beta$
 - (C) $|\alpha| > |\beta|$
 - (D) $|\alpha| < |\beta|$
 - (E) None of the above

7. The state $|\Psi\rangle = \frac{1}{\sqrt{6}} |\Psi_{-1}\rangle + \frac{1}{\sqrt{2}} |\Psi_1\rangle + \frac{1}{\sqrt{3}} |\Psi_2\rangle$ is a linear combination of three orthonormal eigenstates of the operator \hat{O} corresponding to eigenvalues -1, 1 and 2. What is the expectation value of \hat{O} for this state?

 $(A)\frac{1}{7} \\ (B)\frac{2}{3} \\ (C)1 \\ (D)\frac{4}{3} \\ (E)\frac{5}{3} \\ \end{cases}$

8. Which of the following functions could represent the radial wave function of an electron in an atom? (*r* is the distance of the electron from the nucleus and *A*, *b* are constants.)

$$\begin{array}{ccc}
I. & Ae^{-br} \\
II. & A Sin(br) \\
III. & \frac{A}{r}
\end{array}$$

- A) I only
- B) *II* only
- C) I and II only
- D) I and III only
- E) I, II and III
- 9. The wave functions of a particle of mass *m* in an infinite potential well of width *L* are $\phi_n(x) = \sqrt{\frac{2}{L}} \operatorname{Sin}\left(\frac{n\pi x}{L}\right)$ and energy eigenvalues $E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$ where n = 1,2,3 At time t = 0, the particle is in a state given by $\Psi(t = 0) = \frac{1}{\sqrt{14}} [\phi_1 + 2\phi_2 + 3\phi_3]$. Which of the following is a possible result of measurement of energy for the state Ψ ? (A) $2E_1$
 - (B) $5E_1$ (C) $7E_1$ (D) $0E_1$
 - (D) 9*E*₁
 - (E) $14E_1$

10. A free particle with initial kinetic energy *E* and de Broglie wavelength λ enters a region in which its potential energy is *V*. What is the particle's new de Broglie wavelength?

(A) $\lambda(1+E/V)$ (B) $\lambda(1-E/V)$ (C) $\lambda(1+E/V)^{-1}$ (D) $\lambda(1+V/E)^{1/2}$ (E) $\lambda(1-V/E)^{-1/2}$

- 11. In a Maxwell-Boltzmann system with two states of energy ε and 2ε , respectively, with degeneracy of 2 for each state, the partition function is
 - (A) $e^{-\varepsilon/kT}$ (B) $2e^{-2\varepsilon/kT}$ (C) $2e^{-3\varepsilon/kT}$ (D) $e^{-\varepsilon/kT} + e^{-2\varepsilon/kT}$ (E) $2\left[e^{-\varepsilon/kT} + e^{-2\varepsilon/kT}\right]$
- 12. The mean kinetic energy of electrons in metals at room temperature is many times the thermal energy kT. Which of the following can best be used to explain this fact?
 - A) The energy-time uncertainty relation
 - B) The Pauli exclusion principle
 - C) The degeneracy of the energy levels
 - D) The Born approximation
 - E) The wave-particle duality

- 13. Which statement is true about thermodynamic processes? P, V, S, T have usual meanings i.e., pressure, volume, entropy and temperature
 - (A) A reversible process is the same as a cyclic process
 - (B)Entropy of a system increases in an irreversible cyclic process
 - (C) An irreversible process cannot be drawn in PV ST space
 - (D) Efficiency of some modern hybrid engines is higher than Carnot engine
 - (E) None of the above
- 14. How many ten letter words can you make using the letters in a ten letter word "RAWALPINDI"?
 - A) 10!
 - B) 180 × 7!
 - C) $\frac{10!}{2!}$
 - D) 7!
 - D T
 - E) None of the above

- 15. A system has three energy levels at $E_1 = 1, E_2 = 2, E_3 = 3$ that have degeneracies $10^1, 10^2, 10^3$, respectively. Suppose P_1, P_2, P_3 are the occupation probabilities of these levels when the system is in thermal equilibrium with a reservoir at temperature T. Taking $k_BT = 1$ where k_B is the Boltzmann constant, which statement is true?
 - A) $P_1 > P_2 > P_3$ B) $P_1 > P_2 = P_3$ C) $P_1 = P_2 = P_3$ D) $P_1 < P_2 < P_3$ E) $P_1 = P_2 > P_3$

- 16. Which of the following is an eigenfunction of the linear momentum operator $-i\hbar \frac{\partial}{\partial x}$ with a positive eigenvalue $\hbar k$
 - (A) Cos(kx)(B) Sin(kx)(C) e^{-ikx} (D) e^{ikx} (E) e^{-kx}

17. In a given orthonormal basis, an operator A has the values $A|e_1\rangle = 2|e_1\rangle + |e_2\rangle$ and $A|e_2\rangle = 2|e_2\rangle + |e_1\rangle$. The matrix form of A in this basis is

$$\begin{array}{c} A) \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \\ (B) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ (C) \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \\ (D) \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \\ (E) \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

18. Fourier transform of $f(x) = e^{-x^2/\sigma^2}$ in momentum space is the following function

$$(A) f(k) = \sigma k$$

$$(B) f(k) = \sqrt{\pi} e^{-\sigma^2 k}$$

$$(C) f(k) = \sigma \sqrt{\pi} e^{-\sigma^2 k}$$

$$(D) f(k) = \sigma \sqrt{\pi} e^{-\sigma^2 k^2/4}$$

$$(E) f(k) = \sqrt{\pi} e^{-\sigma^2 kx}$$

Spring

2019

В

- 19. The function xe^x expressed as a sum of an even and an odd function is
 - (A) $x + e^x$ (B) Sin(x) + Cos(x)(C) Sinh(x)(D) Sinh(x) + Cosh(x)(E) xSinh(x) + xCosh(x)
- 20. The complex conjugate of the complex number $z = w^{(4y+i7x)}$ where w = 2x 7i is
 - A) $(2x 7i)^{4y i7x}$
 - B) $(2x + 7i)^{4y i7x}$
 - C) $(2x 7i)^{4y + i7x}$
 - D) $(2x + 7i)^{4y+i7x}$
 - E) (4y + i7x)

21. Consider the object subject to two forces of equal magnitude, as shown in Figure. Choose the correct statement with regard to this situation

- (A) The object is in force equilibrium but not torque equilibrium.
- (B) The object is in torque equilibrium but not force equilibrium.
- (C) The object is in both force equilibrium and torque equilibrium.
- (D) The object is in neither force equilibrium nor torque equilibrium.
- (E) Impossible to determine

- 22. A solid sphere and a hollow sphere have the same mass and radius. They are rotating with the same angular speed. Which one has the higher angular momentum?
 - (A) the solid sphere
 - (B) the hollow sphere
 - (C) both have the same angular momentum
 - (D) impossible to determine
 - (E) They have no angular momentum
- 23. A rock of mass *m* is dropped to the ground from a height *h*. A second rock, with mass 2m, is dropped from the same height. When the second rock strikes the ground, what is its kinetic energy?
 - A) twice that of the first rock
 - B) four times that of the first rock
 - C) the same as that of the first rock
 - D) half as much as that of the first rock
 - E) impossible to determine
- 24. A cube has a constant electric potential V on its surface. If there are no charges inside the cube, the potential at the center of the cube is
 - A) $\frac{V}{8}$ B) $\frac{V}{6}$ C) 0

 - D) *V*

 - E) $\frac{V}{2}$
- 25. A particle moves in a circular path of radius r with speed v. It then increases its speed to 2v while traveling along the same circular path. The centripetal acceleration of the particle has changed by what factor? Choose one:
 - A) 0.25
 - B) 0.5
 - C) 2
 - D) 4
 - E) 8