1. A block of mass m on a horizontal surface is attached to a spring having spring constant k. We pull the mass a distance x = A to the right of x = 0, which is the equilibrium position, and let it go. How far to the left of the equilibrium position x = 0 will it reach, assuming that the kinetic coefficient of friction between the mass and the surface is μ_k ?

(A)
$$\frac{-A}{2}$$

(B) $-2A + \frac{2\mu_k mg}{k}$
(C) $\frac{\mu_k mg}{k}$
(D) $-2A$
(E) $-A + \frac{2\mu_k mg}{k}$

2. A completely inelastic collision occurs between a mass m_1 moving upward with velocity v_1 and a mass m_2 moving downward at velocity v_2 . How high does the combined mass rise above the point of collision? The collision occurs close to the surface of earth; ignore air resistance.

(A)
$$\frac{1}{2g} \left(\frac{m_1 v_1 - m_2 v_2}{m_1 + m_2} \right)$$

(B)
$$\frac{m_1 v_1}{g}$$

(C)
$$\frac{1}{g} \left(\frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \right)$$

(D)
$$\frac{1}{g} \left(\frac{m_1 v_1}{m_1 + m_2} \right)$$

(E)
$$\frac{1}{g} \left(\frac{m_2 v_2}{m_1 + m_2} \right)$$

3. A girl of mass M stands on the rim of a frictionless merry-go-round of radius R and rotational inertia *I* that is not moving. She throws a rock of mass m horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is *v*. Afterwards what is the angular speed of the merry-go-round?

(A)
$$\frac{mvR}{I}$$

(B) $\frac{MvR}{mR^2+I}$
(C) $\frac{mvR}{mR}$
(D) $\frac{mv}{MR}$
(E) $\frac{v}{R}$

- 4. A spherical charge distribution has charge density ρ that is constant from r = 0 to r = R and zero beyond. What is the electric field for all values of r less than R?
 A) E = ρr/3ε₀
 - B) $E = \frac{\rho}{3\varepsilon_0 r}$
 - C) $E = \frac{\rho r^2}{3\varepsilon_0}$
 - D) $E = \frac{\rho}{3\varepsilon_0 r^2}$ E) $E = \frac{\rho}{3\varepsilon_0}$
- 5. Find the direction of the magnetic field acting on a positively charged particle moving in the direction which is into the page, as shown in the figure. The direction of the magnetic force acting on it is:
 - (A) Into the page
 - (B) To the right
 - (C) To the left
 - (D) Towards the bottom of the page
 - (E) Towards the top of the page
- 6. A sphere of radius *R* surrounds a particle with charge *Q* located at its center as shown in the figure. The electric flux through a circular cap of half-angle θ is
 - A) Q/ϵ_0
 - B) $Q/2\varepsilon_0$
 - C) $\left(\frac{Q}{\varepsilon_0}\right)\cos\theta$
 - D) $\left(\frac{Q}{2\varepsilon_0}\right)(1-\cos\theta)$
 - E) $\left(\frac{Q}{\varepsilon_0}\right)(\cos\theta 1)$

7. The expression for free energy of a system, connected to a heat bath at temperature T and with two non-degenerate states, one at energy 0 and other at ε , is

A)
$$F = -kT\log(1 + e^{-\varepsilon/kT})$$

$$F = -kT\log(1 - e^{-\varepsilon/kT})$$

(C)
$$F = -kT\log(1 - e^{\varepsilon/kT})$$

(D)
$$F = -kT\log(1+e^{\varepsilon/kT})$$

(E)
$$F = kT\log(1 + e^{-\varepsilon/kT})$$

8. An adiabatic expansion of an ideal gas is described by the expression $PV^{\gamma} = C$, where γ and C are constants. The work done by the gas in expanding from (P_i, V_i) to (P_f, V_f) is

(A)
$$\frac{P_f V_f}{2}$$

(B) $\frac{P_i + P_f}{2} (V_f - V_i)$
(C) $\frac{(P_f V_f - P_i V_i)}{1 - \gamma}$
(D) $\frac{(P_f V_f - P_i V_i)}{1 + \gamma}$
(E) $\frac{P_f (V_f^{1 - \gamma} - V_i^{1 - \gamma})}{1 + \gamma}$

- 9. If we consider the spin of an electron, the maximal occupation number of an energy level in an ideal electron gas is
 - (A) Zero
 - (B) One
 - (C) Two
 - (D) Three
 - (E) Four
- 10. For an isolated quantum mechanical system originally in the state $\Psi = a\phi_n + b\phi_m$ which on measurement is found to be in state ϕ_m at time t. What state will it be found in if a second experimental measurement is made at a time t' later than t?
 - A) ϕ_m
 - B) *φ*_n
 - C) $a\phi_n + b\phi_m$
 - D) Both ϕ_n and ϕ_m will have equal chance to be found
 - E) None of the above
- 11. At a given instant of time, a rigid rotator is in the state $\psi(\vartheta, \phi) = \sqrt{(\frac{3}{4}\pi)} \sin \vartheta \sin \phi$, where ϑ is the polar angle relative to the *z*-axis and ϕ is the azimuthal angle. Measurement will find which of the following possible values of the *z*-component of the angular momentum L_z ?
 - (A) 0
 (B) ħ/2, -ħ/2
 (C) ħ, -ħ
 (D) 2ħ, -2ħ
 - (E) ħ, 0, -ħ
- 12. What is the expectation value of positon for a free particle of mass m moving in one dimension having momentum p_x ?
 - (A)0
 - (B) *x*
 - (C) 2*x*
 - (D) ∞
 - (E) *x/2*

13. A three-dimensional Harmonic Oscillator is in state $E_n = \frac{9\hbar\omega}{2}$, what is the degeneracy of this state? (A) 0

- (B) 3
- (C) 5
- (D) 7
- (E) 9

14. Consider a physical system associated with a three dimensional state space. An orthonormal basis for this system is given by $|1\rangle$, $|2\rangle$, $|3\rangle$ and the Hamiltonian of this system in this basis is given by the matrix: $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. What are the possible results if a

measurement of energy is made, in appropriate units?

- (A) 1,2,3
- (B) 2,2,2
- (C) 1,1,1
- (D) 3 and 3
- (E) 1 and 3
- 15. You must have seen that one can obtain the classical Maxwell-Boltzmann distribution from the quantum Fermi-Dirac and Bose-Einstein distributions: $\frac{1}{e^{\beta(E_i-\mu)}\pm 1}$ where $\beta = \frac{1}{kT}$. This is obtained when
 - A) $e^{\beta(E_i-\mu)} \gg 1$
 - B) $e^{\beta(E_i-\mu)} \ll 1$
 - C) $e^{\beta(E_i-\mu)} = 1$
 - D) $e^{\beta E_i} = 1$
 - E) $e^{\beta\mu} \gg 1$

- 16. Consider an ideal gas having N particles in a container attached to a piston. The system is at temperature T. We let the gas expand isothermally in a quasi-static process from initial volume V_i to final volume V_f . If the workdone by the gas during the process is
 - $NkTln\left(\frac{V_f}{V_i}\right)$, what is the heat input?
 - A) *kT*
 - B) NkT
 - C) $NkTln\left(\frac{V_f}{V_i}\right)$
 - D) $\frac{3}{2} NkT$ E) $\frac{1}{2} NkT$

17. The real and imaginary parts of $z = \frac{1+i}{1-i}$ are

- (A) (Re(z), Im(z)) = (0,1)
- (B) (Re(z), Im(z)) = (1,1)
- (C) (Re(z), Im(z)) = (-1, 1)
- (D) (Re(z), Im(z)) = (1, -1)
- (E) (Re(z), Im(z)) = (0,0)
- 18. Eigenvalues of the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are
 - A) (0,0) B) (0,1) C) (1,0) D) (1,-1) E) (-1,-1)

A Spring 2018

- 19. Expansion of $\sin^2 x$ about x = 0 is
 - A) $x^2 \frac{x^4}{3} + \frac{2x^6}{45} + ...$ B) $x^2 + \frac{x^4}{3} - \frac{2x^6}{45} + ...$ C) $x - \frac{x^3}{3} + \frac{2x^5}{15} + ...$ D) $1 + x^2 - \frac{x^4}{3} + ...$ E) $1 - x^2 + \frac{x^4}{3} + ...$
- 20. Consider the function f(x, y) = Sinx + Siny. Which of the following points (x, y) is the stationary point of f(x, y)?
 - A) $(\frac{\pi}{2}, \frac{\pi}{2})$
 - B) (0,0)
 - C) $(\frac{\pi}{2}, 0)$
 - D) $\left(0, \frac{\pi}{2}\right)$
 - E) (π,π)

- 21. For v = (y, a x, b z) to be a divergence-less and curl-less vector, the values of a and b are
 - A) (a, b) = (0, 0)
 - B) (a, b) = (0, 1)
 - C) (a, b) = (1, 0)
 - D) (a, b) = (-1, 0)
 - E)(a,b) = (0,-1)

- 22. A classical system with one degree of freedom has a Hamiltonian H(q, p) = p²/2m + A(q)p + B(q), where A and B are functions of the coordinate q and p is the momentum conjugate to q. The velocity \(\vec{q}\) is

 A) p/m
 B) A(q)
 C) p/m + B(q)
 D) B(q)
 E) p/m + A(q)
- 23. The equivalent capacitance between points a and b in the combination of capacitors shown in Figure, is:
 - A) 12.9 μ F B) 11.9 μ F C) 14.9 μ F D) 10.8 μ F E) 9.9 μ F
- 24. The position vector of a particle moving in a circle of radius *R* with angular velocity ω at time t is $\vec{r}(t) = R(\cos(\omega t) \hat{i} + \sin(\omega t)\hat{j})$. Its velocity at time t = 0 is A) 0
 - B) $2\omega R\hat{j}$
 - C) $\omega R\hat{i}$
 - D) ωR_i
 - E) $-\omega R\hat{j}$
- 25. Two point charges are located on the x-axis, $q_1 = -e$ at x = 0 and $q_2 = +e$ at x = a. The work that must be done by an external force to bring a third point charge $q_3 = +e$ to x = 2a from infinity is
 - A) $\frac{+e^2}{8\pi\varepsilon_0 a}$ B) $\frac{+e^2}{4\pi\varepsilon_0 a}$ C) $\frac{-e^2}{8\pi\varepsilon_0 a}$ D) $\frac{+e^2}{a}$
 - E) $\frac{a}{8\pi\varepsilon_0 a}$