1. Two balls A and B of masses m_A and m_B are pushed horizontally from a table of height h. Ball A is pushed so that its initial velocity is v_A and ball B is pushed so that its initial velocity is v_B . Find the time it takes each ball to hit the ground. The acceleration due to gravity is g.

$$(A) \sqrt{\frac{h}{2g}}$$
$$(B) \sqrt{\frac{2h}{g}}$$
$$(C) \sqrt{\frac{3h}{2g}}$$
$$(D) \sqrt{\frac{h}{g}}$$
$$(E) \sqrt{\frac{h}{4g}}$$

- 2. A fire fighter, distance d from a burning building, directs a stream of water from a firehouse at angle θ_i above the horizontal as shown in diagram. If the initial speed of the stream is v_i , at what height *h* does the water strike the building?
- (A) $d \sin^2 \theta_i g/t$
- (B) $gd^2/cos \theta_i$
- (C) d tan θ_i gd²/2 v_i
- (D) d tan θ_i $gd^2/2v_i^2cos^2\theta_i$
- (E) None of These

- 3. A skater is spinning at an angular frequency of ω_1 with her arms and legs extended outward. In this position, her moment of inertia with respect to the vertical axis about which she is spinning is I_1 . She pulls her arms and legs in close to her body changing her moment of inertia to $I_2 = \frac{I_1}{2}$ and angular velocity ω_2 . What is her final kinetic energy?
 - (A) same as the initial kinetic energy
 - (B) Three times the initial kinetic energy
 - (C) Half of the initial kinetic energy
 - (D) Four times the initial kinetic energy
 - (E) Twice the initial kinetic energy

4. Two spherical conductors of radii r_1 and r_2 are separated by a distance much greater than the radius of either sphere. The spheres are connected by a conducting wire. The charges on the spheres in equilibrium are q_1 and q_2 , respectively, and they are uniformly charged. The ratio of the magnitudes of the electric fields at the surfaces of the spheres is

(A)
$${}^{E_1}/E_2 = {}^{r_1}/r_2$$

(B) ${}^{E_1}/E_2 = 0$
(C) ${}^{E_1}/E_2 = {}^{r_2}/r_1$
(D) ${}^{E_1}/E_2 = 1$
(E) ${}^{E_1}/E_2 = 2$

- 5. An electromagnetic wave propagates in the negative *y* direction. The electric field at a point in space is momentarily oriented in the positive *x* direction. In which direction is the magnetic field at that point momentarily oriented?
 - (A) the negative x direction
 - (B) the positive *y* direction
 - (C) the positive *z* direction
 - (D) the negative z direction
 - (E) impossible to determine.
- 6. Solenoid A has length L and N turns, solenoid B has length 2L and N turns and solenoid C has length L/2 and 2N turns. The fields at the centers of the solenoids A, B and C is B_A, B_B and B_C, respectively. If each solenoid carries the same current, the magnitudes of the magnetic fields at the centers of the solenoids are related as
 - A) $B_C = 4B_A$
 - B) $4B_C = B_A$
 - C) $B_C = B_A$
 - D) $B_C = 2B_A$
 - E) $2B_C = B_A$

- Let S_I denote the change in entropy of a sample for an irreversible process from state A to state B. Let S_R denote the change in entropy of the same sample for a reversible process from state A to state B. Then which of the following statement is true?
 - (A) $S_I > S_R$
 - (B) $S_I = S_R$
 - (C) $S_{\rm I} < S_{\rm R}$
 - (D) $S_I = 2 S_R$
 - (E) $S_R = S_I$
- 8. Suppose that each system in an ensemble is a single dice and n donates the number of dots showing upwards. Let f be the square of dots showing upwards ($f_n = n^2$). What is the mean value of f if large number of dice are rolled?
 - (A) 91/6 (B) 7 (C) $\frac{1}{6}$ (D) $\frac{1}{36}$ (E) $\frac{1}{5}$
- 9. The solution to the Schrodinger equation for a particle bound in a one-dimensional, infinitely deep potential well, indexed by quantum number *n*, indicates that in the middle of the well the probability density vanishes for
 - (A) The ground state (n = 1) only
 - (B) States of even n (n = 2, 4 ...)
 - (C) States of odd n (n = 1, 3 ...)
 - (D) All states
 - (E) All states except the ground state

- 10. A particle of mass *m* has the wave function $\Psi(x, t) = e^{i\omega t} [\alpha \cos kx + \beta \sin kx]$, where α and β are complex constants and ω and k are real constants. The probability current density will be given by which of the following? (Note α^* denotes the complex conjugate of α)
 - A) 0 ħk

]

C)
$$\frac{\frac{\hbar k}{2m}}{\frac{2m}{m}}(|\alpha|^2 + |\beta|^2)$$

D) $\frac{\frac{\hbar k}{2m}}{\frac{2m}{m}}(|\alpha|^2 - |\beta|^2)$
E) $\frac{\frac{\hbar k}{2mi}}{\frac{2mi}{m}}(\alpha^*\beta - \beta^*\alpha)$

- 11. If A and B are Hermitian operators, each of which possesses a complete set of eigenfunctions, and if AB = BA, then
 - (A) \mathbf{A} and \mathbf{B} both represent the same observables
 - (B) A and B both commute with the Hamiltonian
 - (C) Observation of either one alters the result of the other
 - (D) There exists a complete set of functions which are eigenfunctions of A and B
 - (E) Neither A nor B represents an observable
- 12. For an energy level of Hydrogen atom having principal quantum number *n* and angular quantum number *l*, how many orbitals share the same angular momentum?
 - (A) n(*B*) n^2 (C)l(D)l(l+1)(E) 2l+1

13. A three level system is found to be in the state: $|\Phi\rangle = 2|E_1\rangle + 3|E_2\rangle + |E_3\rangle$, which is a linear combination of orthonormal energy states with corresponding energy E_1 , E_2 , E_3 . What is the probability of obtaining the energy E_2 ?

(A) 1/2
(B) 3/11
(C) 9/14
(D) 3/14
(E) 1/12

- 14. Suppose that $|\phi_1\rangle$ and $|\phi_2\rangle$ form an orthonormal basis. Working in the ϕ basis, a 2x2 matrix whose action on any state is to project out the ϕ_2 part is
 - $(A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ (B) \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \\ (C) \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \\ (D) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\ (E) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- 15. For a certain system there is only one accessible state and it has energy $E = -NkTln\left(\frac{V}{V_0}\right)$, where V_0 is a constant. The partition function of the system in terms of T, V and N is
 - A) $\left(\frac{V}{V_0}\right)^N$ B) $\left(\frac{V_0}{V}\right)^N$ C) $ln(\frac{V}{V_0})$ D) $ln\left(\frac{V_0}{V}\right)$ E) $N\left(\frac{V_0}{V}\right)$

16. Consider an ideal gas that is compressed slowly from an initial volume V_i to a final volume V_f as it is kept thermally insulated. In this case its pressure is found to depend on the volume as $P = \alpha V^{-5/3}$ where α is independent of V. What is the work done on the gas in this process?

A)
$$\frac{3\alpha}{2} \left(V_f^{-1/3} - V_i^{-1/3} \right)$$

B)
$$\alpha (V_f^{-2/3} - V_i^{-2/3})$$

C)
$$\frac{3\alpha}{2} \left(V_f^{-2/3} - V_i^{-2/3} \right)$$

D)
$$\frac{2\alpha}{3} \left(V_f^{-2/3} - V_i^{-2/3} \right)$$

E)
$$-\frac{3\alpha}{2} \left(V_f^{-2/3} - V_i^{-2/3} \right)$$

- 17. Suppose a scalar field X(x, y, z) is related to a vector field $\vec{Y}(x, y, z)$ such that $X = \vec{V} \cdot \vec{Y}$. If X(x, y, z) = 1 inside a cube of edge length a, evaluate the following integral over the surface of this cube: $I = \oint_{cube \ surface} \vec{Y} \cdot d\vec{a}$, where $d\vec{a}$ is an infinitesimal area element on the surface of the cube.
 - (A) 0 (B) a^{3} (C) $6a^{2}|\vec{Y}|$ (D) 1 (E) 2
- 18. Consider the position vector of a point P(x, y, z) in Cartesian coordinates, $\vec{p} = x\hat{x} + y\hat{y} + z\hat{z}$. What are the components of this vector along the basis vectors \hat{r} , $\hat{\theta}$, and $\hat{\varphi}$ of spherical polar coordinate system.

A)
$$\sqrt{x^2 + y^2 + z^2}$$
, 0, 0
(B) 0, 0, 0
(C) $\sqrt{x^2 + y^2 + z^2}$, $\tan^{-1} \frac{\sqrt{x^2 + y^2}}{z}$, $\tan^{-1} \frac{y}{x}$
(D) $\sqrt{x^2 + y^2}$, $\tan^{-1} \frac{\sqrt{x^2 + y^2}}{z}$, z
(E) 1,1,1

19. The Fourier coefficients of complex Fourier series of the function $f(x) = 2\sin(x) - 3e^{-ix}$ are

(A) $c_1 = 2, c_{-1} = -3, c_n = 0$ for $n \neq \pm 1$ (B) $c_1 = -i, c_{-1} = (i - 3), c_n = 0$ for $n \neq \pm 1$ (C) $c_0 = 1, c_n = 0$ for $n \neq 0$ (D) f(x) is a complicated function, the Fourier series cannot be written. (E) $c_1 = 1, c_{-1} = -1, c_n = 0$ for $n \neq \pm 1$

- 20. What happens to the position vector \vec{p} of complex variable z = x + iy in the complex plane when z is multiplied by *i*.
 - (A) \vec{p} changes to $-\vec{p}$
 - (B) \vec{p} becomes a scalar q
 - (C) \vec{p} rotates by 90° counter-clockwise
 - (D) \vec{p} rotates by 90° clockwise
 - (E) Nothing happens to \vec{p}
- 21. The general solution to the differential equation $\frac{dy}{dx} = \frac{y}{e^x lny}$ (y > 0) is
 - A) $y = e^{\pm \sqrt{e^{-x} + C}}$ B) $y = e^{\pm \sqrt{-2e^{-2x} + C}}$ C) $y = e^{\pm \sqrt{-2e^{-3x} + C}}$ D) $y = e^{\pm \sqrt{-2e^{-x} + C}}$ E) $y = e^{\pm x} + C$
 - 22. A block of mass m is attached to a spring of force constant k. The block is pulled to a position x_i to the right of equilibrium and released from rest. What is the speed of the

Fall 2018

block when it passes through the equilibrium point x = 0 on a frictionless horizontal surface ?

A)
$$\sqrt{\frac{k}{m}} x_i$$

B) 0
C) $\sqrt{\frac{k}{m}}$
D) $\sqrt{\frac{k}{m}} x_i^2$
E) $\sqrt{\frac{m}{k}} x_i$

- 23. A particle with charge q is located a distance d from an infinite plane. The electric flux through the plane due to the charged particle is
 - A) $\frac{q}{\varepsilon_0}$ B) $\frac{q}{2\varepsilon_0}$

 - C) 0
 - D) ∞
 - E) $\frac{qd}{\varepsilon_0}$
- 24. A bullet of mass m is fired into a stationary block of wood having mass M suspended like a pendulum and makes a completely inelastic collision with it. After the impact, the block swings up to a maximum height *h*. What is the initial speed of the bullet?

A)
$$\frac{M}{m}\sqrt{2gh}$$

B) $\frac{m}{M}\sqrt{2gh}$
C) $\frac{m+M}{m}\sqrt{2gh}$
D) $\sqrt{2mgh}$
E) $\sqrt{2gh}$

25. Two charges are placed on the x-axis. The positive charge +8q at the origin and a negative charge -2q at x = L. At which point on the x-axis is the net electric field due to these two charges zero? A \ Δ

A)
$$x = 0$$

B) $x = 2L$

C) x = LD) x = L/2E) x = -L